organic compounds

Acta Crystallographica Section C **Crystal Structure** Communications ISSN 0108-2701

N-Propionylhydroxylamine forms a three-dimensional hydrogen-bonded framework structure

George Ferguson^a and Christopher Glidewell^{b*}

^aDepartment of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1, and ^bSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland Correspondence e-mail: cg@st-andrews.ac.uk

Received 14 December 2000 Accepted 2 January 2001

The title compound, N-hydroxypropanamide, $C_3H_7NO_2$, crystallizes with Z' = 3 in $P2_1/c$. The molecules are linked by three N-H···O hydrogen bonds [N···O 2.8012 (16) to 2.8958 (15) Å; N-H···O 163 to 168°] and by three O-H···O hydrogen bonds [O···O 2.6589 (15) to 2.6775 (17) Å; $O-H\cdots O$ 165 to 177°] into a single three-dimensional framework.

Comment

Simple carboxylic amides RCONH₂ exhibit a wide variety of supramolecular arrangements, even though each molecule generally acts as a twofold donor and as a twofold acceptor of hydrogen bonds (Leiserowitz & Schmidt, 1969). Thus, for example, the orthorhombic polymorph of acetamide, CH₃CONH₂ [Cambridge Structural Database (Allen & Kennard, 1993) code ACEMID; Hamilton, 1965] forms onedimensional ribbons, as does benzamide, PhCONH2 (BZAMID01; Blake & Small, 1972), whereas the rhombohedral polymorph of acetamide (ACEMID01; Denne & Small, 1971) forms a three-dimensional array. Propionamide C₂H₅CONH₂ (ZZZKAY01; Usanmaz & Adler, 1982), by contrast, forms a two-dimensional hydrogen-bonded structure. Despite this wide variety, the hydrogen-bonding behaviour of the hydroxylated analogues, the N-acylhydroxylamines RCONHOH, has been much less intensively studied. The structure of MeCONHOH has been reported (ACXMAC; Bracher & Small, 1970), but only as the hemihydrate, where the intrinsic behaviour of the hydroxylamine itself is obscured. Accordingly, we have now investigated the supramolecular structure of anhydrous N-propionoylhydroxylamine, C₂H₅CO-NHOH, (I).

Compound (I) crystallizes in space group $P2_1/c$ with three independent molecules in the asymmetric unit (Fig. 1). The hydrogen-bonding behaviour (Table 1) and the molecular conformations (Table 2) of these molecules preclude the possibility of any additional symmetry. Each molecule acts as a twofold donor of hydrogen bonds, one each of the $N-H \cdots O$

and O-H...O types, and each acts as a twofold acceptor (Table 1): each molecule of type 1 (containing N1) accepts one hydrogen bond from a type 2 molecule (containing N2) and one from a type 3 molecule (containing N3); each molecule of type 2 accepts hydrogen bonds from two different type 1 molecules; and each type 3 molecule accepts one hydrogen bond from a type 2 molecule and one from another type 3 molecule.

In each of the independent molecules, the C-C(O)-N(H)-O moiety is nearly planar with the central O-C-N-H unit in a *trans* conformation. The C-O bonds in (I) are all at the upper end of the range typically found in simple amides of type RCONH₂ [mean 1.234 (12) Å; upper quartile 1.243 Å (Allen et al., 1987)], and the C-N bonds are at the lower end of the range of such bonds in these amides [mean 1.325 (9) Å; lower quartile 1.318 Å]. This suggests that the canonical form (Ia) is significant here regardless of the presence of the *N*-hydroxy group. The N–O bond lengths are unexceptional. Consistent with the importance of (Ia), the sole hydrogenbond acceptors in (I) are the carbonyl O atoms: the hydroxyl O and the N atoms are donors only. Each carbonyl group and its two associated hydrogen-bond donors, one O and one N, form an almost planar array (Table 3); the angle sums around these O acceptors are all close to 360°. However, it is notable that the angles involving the N donors are consistently and significantly wider than those involving the O donors.

Within the selected asymmetric unit (Fig. 1), atoms O22 and N3 both act as hydrogen-bond donors to O11. The remaining four hydrogen bonds, two each of the $N-H\cdots O$ and $O-H \cdots O$ types, link these three-molecule units into a single three-dimensional framework. This framework is most easily analysed in terms of three distinct one-dimensional motifs, running parallel to the [010], [001] and [100] directions, and utilizing one, two and three types of molecule, respectively.

The three independent molecules in (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Firstly, atom O32 in the asymmetric unit at (x, y, z) acts as hydrogen-bond donor to O31 at $(1 - x, \frac{1}{2} + y, \frac{1}{2} - z)$, while O32 at $(1 - x, \frac{1}{2} + y, \frac{1}{2} - z)$ in turn acts as donor to O31 at (x, 1 + y, z), so producing a C(5) chain running parallel to the [010] direction, involving only a single type of molecule and generated by the 2_1 screw axis along $(\frac{1}{2}, y, \frac{1}{4})$ (Fig. 2). Secondly, O12 at (x, y, z) acts as donor to O21 at $(x, \frac{1}{2} - y, \frac{1}{2} + z)$, while O12 at $(x, \frac{1}{2} - y, \frac{1}{2} + z)$ acts as donor to O21 at (x, y, 1 + z), producing a $C_2^2(10)$ chain parallel to [001], involving molecules of types 1 and 2 and generated by the glide plane at $y = \frac{1}{4}$ (Fig. 3). Finally, N2 at (x, y, z) acts as donor to O31 at $(1 - x, \frac{1}{2} + y, \frac{1}{2} - z)$, while N1 at $(1 - x, \frac{1}{2} + y, \frac{1}{2} - z)$ acts as donor to O21 at (1 + x, y, z), thus generating a $C_3^3(12)$ chain running parallel to [100] and involving all three independent molecules (Figs. 2 and 3).

The pairwise combinations of these three chain motifs give rise to three intersecting two-dimensional arrays which together make up the overall three-dimensional framework. Thus, for example, the combination of the [100] and [001] motifs generates an (010) net built from centrosymmetric $R_{10}^{8}(38)$ rings involving all three types of molecule (Fig. 3), while the combination of the [100] and [010] chain motifs produces an (001) net built from $R_{10}^{9}(40)$ rings (Fig. 2)

In the hemihydrate of the *N*-acetyl analogue of (I) (ACXMAC; Bracher & Small, 1970), there is only one independent molecule of the hydroxylamine, which again acts as a double donor of hydrogen bonds and as a double acceptor with only the carbonyl O acting as acceptor. The molecules are linked by $N-H\cdots$ O hydrogen bonds into C(4) chains, two per unit cell. The water molecules, which lie on twofold rotation axes in *Pnn2*, act as double donors and as double acceptors in $O-H\cdots$ O hydrogen bonds; each water molecule is thereby linked to four different C(4) chains and these links serve to connect all of the molecules into a single three-dimensional framework.

Figure 2

Part of the crystal structure of (I) showing C(5) and $C_3^3(12)$ chains parallel to [010] and [100], respectively, combining to form a (001) sheet of $R_{10}^9(40)$ rings. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position $(1 - x, \frac{1}{2} + y, \frac{1}{2} - z)$.

By contrast to the rather complex three-dimensional structures in both (I) and ACXMAC, the sulfonylhydroxylamine analogues MeSO₂NHOH (DIRMIA; Brink & Mattes, 1986) and PhSO₂NHOH (JEHWUO; Scholz *et al.*, 1989) form much simpler supramolecular structures. In both compounds, the N-H and O-H units act as hydrogen-bond donors, as in the acylhydroxylamines, but each of the sulfonyl O atoms acts as a single acceptor. The molecules in DIRMIA are linked thus into molecular ladders with pairs of antiparallel $C_2^2(7)$ uprights enclosing centrosymmetric $R_2^2(10)$ rings between the S-N bonds acting as rungs; in JEHWUO, the molecules are linked into (4,4) nets (Batten & Robson, 1998) built from a single type of $R_4^4(16)$ ring.

Figure 3

Part of the crystal structure of (I) showing $C_2^2(10)$ and $C_3^3(12)$ chains parallel to [001] and [100], respectively, combining to form a (010) sheet of $R_{10}^8(38)$ rings. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), hash (#) or dollar sign (\$) are at the symmetry positions $(1 - x, \frac{1}{2} + y, \frac{1}{2} - z), (x, \frac{1}{2} - y, \frac{1}{2} + z)$ and (1 - x, 1 - y, 1 - z), respectively.

Experimental

Crystals of (I) suitable for single-crystal X-ray diffraction were provided by Professor D. A. Brown of University College Dublin. A synthesis is described in Brown & Roche (1983).

Crystal data

-	
$C_3H_7NO_2$	$D_x = 1.282 \text{ Mg m}^{-3}$
$M_r = 89.10$	Mo $K\alpha$ radiation
Aonoclinic, $P2_1/c$	Cell parameters from 25
$u = 12.052 (3) \text{\AA}$	reflections
p = 8.009 (3) Å	$\theta = 9.81 - 11.23^{\circ}$
r = 14.354 (3) Å	$\mu = 0.107 \text{ mm}^{-1}$
$B = 92.35 \ (2)^{\circ}$	T = 293 (2) K
$V = 1384.3 (7) \text{ Å}^3$	Block, colourless
Z = 12	$0.40 \times 0.40 \times 0.40$ mm

organic compounds

Data collection

Nonius CAD-4 diffractometer $\theta/2\theta$ scans 3374 measured reflections 3016 independent reflections 2426 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.017$ $\theta_{\text{max}} = 26.97^{\circ}$

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.038$
$wR(F^2) = 0.114$
S = 1.020
3016 reflections
170 parameters
H-atom parameters constrained

 $h = 0 \rightarrow 15$ $k = 0 \rightarrow 10$ $l = -18 \rightarrow 18$ 3 standard reflections frequency: 120 min intensity decay: negligible

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0591P)^{2} + 0.3743P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.28 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 1997) Extinction coefficient: 0.026 (3)

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O12-H12\cdots O21^{i}$	0.82	1.84	2.6589 (15)	175
$N1 - H1 \cdots O21^{ii}$	0.86	2.05	2.8958 (15)	166
O22−H22···O11	0.82	1.84	2.6624 (16)	177
$N2-H2\cdots O31^{iii}$	0.86	2.03	2.8609 (16)	163
$O32-H32 \cdot \cdot \cdot O31^{iii}$	0.82	1.88	2.6775 (17)	165
N3-H3···O11	0.86	1.95	2.8012 (16)	168

Symmetry codes: (i) $x, \frac{1}{2} - y, \frac{1}{2} + z$; (ii) $-x, y - \frac{1}{2}, \frac{1}{2} - z$; (iii) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$.

Table 2

Selected geometric parameters (Å,°).

Parameter	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 3
On1-Cn1	1.2414 (15)	1.2435 (15)	1.2472 (16)
Cn1-Nn	1.3103 (18)	1.3121 (17)	1.3117 (19)
Nn-On2	1.3887 (15)	1.3872 (14)	1.3854 (15)
On1-Cn1-Nn-On2	-8.5(2)	-6.6(2)	-1.6(2)
Nn - Cn1 - Cn2 - Cn3	134.74 (14)	-118.96 (16)	111.78 (17)

Compound (I) crystallized in the monoclinic system; space group $P2_1/c$ was assumed from the systematic absences. All H atoms were clearly revealed in difference maps and were then allowed for as riding atoms, with C–H = 0.96 (CH₃) or 0.97 Å (CH₂), N–H = 0.86 Å and O–H = 0.82 Å.

Table 3

Angles (°) around the carbonyl-O acceptor sites.

Parameter	n = 1	<i>n</i> = 2	<i>n</i> = 3	
$Cn1-On1\cdotsO\dagger$	124.01 (9)	116.47 (9)	118.34 (10)	
$Cn1 - On1 \cdots N^{\dagger}$	140.71 (10)	133.14 (9)	138.13 (10)	
$O \cdots On 1 \cdots N$	95.06 (5)	110.36 (5)	99.39 (5)	

† O and N donors are defined in Table 1.

Data collection: *CAD-4-PC Software* (Nonius, 1992); cell refinement: *SET*4 and *CELDIM* (Nonius, 1992); data reduction: *HELENA* in *PLATON* (Spek, 2000); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2000); software used to prepare material for publication: *SHELXL*97.

We thank Professor D. A. Brown of University College Dublin for the sample of the title compound.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1449). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. Engl. 37, 1460-1494.

- Blake, C. C. F. & Small, R. W. H. (1972). Acta Cryst. B28, 2201-2206.
- Bracher, B. H. & Small, R. W. H. (1970). Acta Cryst. B26, 1705-1709.

Brink, K. & Mattes, R. (1986). Acta Cryst. C42, 319-322.

Brown, D. A. & Roche, A. L. (1983). Inorg. Chem. 22, 2199-2202.

Denne, W. A. & Small, R. W. H. (1971). Acta Cryst. B27, 1094-1098.

Hamilton, W. C. (1965). Acta Cryst. 18, 866-870.

Leiserowitz, L. & Schmidt, G. M. J. (1969). J. Chem. Soc. A, pp. 2372-2382.

Nonius (1992). CAD-4-PC Software. Version 1.1. Nonius BV, Delft, The Netherlands.

Scholz, J. N., Engel, P. S., Glidewell, C. & Whitmire, K. H. (1989). *Tetrahedron*, 45, 7695–7708.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Spek, A. L. (2000). *PLATON*. University of Utrecht, The Netherlands. Usanmaz, A. & Adler, G. (1982). *Acta Cryst*. B**38**, 660–662.