Acta Crystallographica Section C
Crystal Structure

N-Propionylhydroxylamine forms a three-dimensional hydrogen-bonded framework structure

George Ferguson ${ }^{\text {a }}$ and Christopher Glidewell ${ }^{\text {b* }}$

${ }^{\text {a Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, }}$ Canada N1G 2W1, and ${ }^{\mathbf{b}}$ School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland
Correspondence e-mail: cg@st-andrews.ac.uk

Received 14 December 2000
Accepted 2 January 2001
The title compound, N-hydroxypropanamide, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}$, crystallizes with $Z^{\prime}=3$ in $P 2_{1} / c$. The molecules are linked by three $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $[\mathrm{N} \cdots \mathrm{O} 2.8012$ (16) to 2.8958 (15) $\AA ; \mathrm{N}-\mathrm{H} \cdots \mathrm{O} 163$ to 168°] and by three $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds [$\mathrm{O} \cdots \mathrm{O} 2.6589$ (15) to 2.6775 (17) \AA; $\mathrm{O}-\mathrm{H} \cdots \mathrm{O} 165$ to $\left.177^{\circ}\right]$ into a single three-dimensional framework.

Comment

Simple carboxylic amides $R \mathrm{CONH}_{2}$ exhibit a wide variety of supramolecular arrangements, even though each molecule generally acts as a twofold donor and as a twofold acceptor of hydrogen bonds (Leiserowitz \& Schmidt, 1969). Thus, for example, the orthorhombic polymorph of acetamide, $\mathrm{CH}_{3} \mathrm{CONH}_{2}$ [Cambridge Structural Database (Allen \& Kennard, 1993) code ACEMID; Hamilton, 1965] forms onedimensional ribbons, as does benzamide, PhCONH_{2} (BZAMID01; Blake \& Small, 1972), whereas the rhombohedral polymorph of acetamide (ACEMID01; Denne \& Small, 1971) forms a three-dimensional array. Propionamide $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CONH}_{2}$ (ZZZKAY01; Usanmaz \& Adler, 1982), by contrast, forms a two-dimensional hydrogen-bonded structure. Despite this wide variety, the hydrogen-bonding behaviour of the hydroxylated analogues, the N-acylhydroxylamines RCONHOH, has been much less intensively studied. The structure of MeCONHOH has been reported (ACXMAC; Bracher \& Small, 1970), but only as the hemihydrate, where the intrinsic behaviour of the hydroxylamine itself is obscured. Accordingly, we have now investigated the supramolecular structure of anhydrous N -propionoylhydroxylamine, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}$ NHOH, (I).

Compound (I) crystallizes in space group $P 2_{1} / c$ with three independent molecules in the asymmetric unit (Fig. 1). The hydrogen-bonding behaviour (Table 1) and the molecular conformations (Table 2) of these molecules preclude the possibility of any additional symmetry. Each molecule acts as a twofold donor of hydrogen bonds, one each of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$
and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ types, and each acts as a twofold acceptor (Table 1): each molecule of type 1 (containing N1) accepts one hydrogen bond from a type 2 molecule (containing N2) and one from a type 3 molecule (containing N3); each molecule of type 2 accepts hydrogen bonds from two different type 1 molecules; and each type 3 molecule accepts one hydrogen bond from a type 2 molecule and one from another type 3 molecule.

(I)

(Ia)

In each of the independent molecules, the $\mathrm{C}-\mathrm{C}(\mathrm{O})-$ $\mathrm{N}(\mathrm{H})-\mathrm{O}$ moiety is nearly planar with the central $\mathrm{O}-\mathrm{C}-\mathrm{N}-$ H unit in a trans conformation. The $\mathrm{C}-\mathrm{O}$ bonds in (I) are all at the upper end of the range typically found in simple amides of type $R \mathrm{CONH}_{2}$ [mean 1.234 (12) \AA; upper quartile $1.243 \AA$ (Allen et al., 1987)], and the $\mathrm{C}-\mathrm{N}$ bonds are at the lower end of the range of such bonds in these amides [mean 1.325 (9) \AA; lower quartile $1.318 \AA$]. This suggests that the canonical form $(\mathrm{I} a)$ is significant here regardless of the presence of the N -hydroxy group. The $\mathrm{N}-\mathrm{O}$ bond lengths are unexceptional. Consistent with the importance of (Ia), the sole hydrogenbond acceptors in (I) are the carbonyl O atoms: the hydroxyl O and the N atoms are donors only. Each carbonyl group and its two associated hydrogen-bond donors, one O and one N , form an almost planar array (Table 3); the angle sums around these O acceptors are all close to 360°. However, it is notable that the angles involving the N donors are consistently and significantly wider than those involving the O donors.

Within the selected asymmetric unit (Fig. 1), atoms O22 and N 3 both act as hydrogen-bond donors to O11. The remaining four hydrogen bonds, two each of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ types, link these three-molecule units into a single three-dimensional framework. This framework is most easily analysed in terms of three distinct one-dimensional motifs, running parallel to the [010], [001] and [100] directions, and utilizing one, two and three types of molecule, respectively.

Figure 1
The three independent molecules in (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Firstly, atom O32 in the asymmetric unit at (x, y, z) acts as hydrogen-bond donor to O31 at ($1-x, \frac{1}{2}+y, \frac{1}{2}-z$), while O32 at $\left(1-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$ in turn acts as donor to O31 at $(x$, $1+y, z$), so producing a $C(5)$ chain running parallel to the [010] direction, involving only a single type of molecule and generated by the 2_{1} screw axis along $\left(\frac{1}{2}, y, \frac{1}{4}\right)$ (Fig. 2). Secondly, O 12 at (x, y, z) acts as donor to O 21 at $\left(x, \frac{1}{2}-y, \frac{1}{2}+z\right)$, while O 12 at $\left(x, \frac{1}{2}-y, \frac{1}{2}+z\right)$ acts as donor to O 21 at $(x, y, 1+z)$, producing a $C_{2}^{2}(10)$ chain parallel to [001], involving molecules of types 1 and 2 and generated by the glide plane at $y=\frac{1}{4}$ (Fig. 3). Finally, N 2 at (x, y, z) acts as donor to O31 at ($1-x$, $\left.\frac{1}{2}+y, \frac{1}{2}-z\right)$, while N 1 at $\left(1-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$ acts as donor to O 21 at $(1+x, y, z)$, thus generating a $C_{3}^{3}(12)$ chain running parallel to [100] and involving all three independent molecules (Figs. 2 and 3).

The pairwise combinations of these three chain motifs give rise to three intersecting two-dimensional arrays which together make up the overall three-dimensional framework. Thus, for example, the combination of the [100] and [001] motifs generates an (010) net built from centrosymmetric $R_{10}^{8}(38)$ rings involving all three types of molecule (Fig. 3), while the combination of the [100] and [010] chain motifs produces an (001) net built from $R_{10}^{9}(40)$ rings (Fig. 2)

In the hemihydrate of the N-acetyl analogue of (I) (ACXMAC; Bracher \& Small, 1970), there is only one independent molecule of the hydroxylamine, which again acts as a double donor of hydrogen bonds and as a double acceptor with only the carbonyl O acting as acceptor. The molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into $C(4)$ chains, two per unit cell. The water molecules, which lie on twofold rotation axes in Pnn2, act as double donors and as double acceptors in $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds; each water molecule is thereby linked to four different $C(4)$ chains and these links serve to connect all of the molecules into a single three-dimensional framework.

Figure 2

Part of the crystal structure of (I) showing $C(5)$ and $C_{3}^{3}(12)$ chains parallel to [010] and [100], respectively, combining to form a (001) sheet of $R_{10}^{9}(40)$ rings. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk $(*)$ are at the symmetry position $\left(1-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$.

By contrast to the rather complex three-dimensional structures in both (I) and ACXMAC, the sulfonylhydroxylamine analogues $\mathrm{MeSO}_{2} \mathrm{NHOH}$ (DIRMIA; Brink \& Mattes, 1986) and $\mathrm{PhSO}_{2} \mathrm{NHOH}$ (JEHWUO; Scholz et al., 1989) form much simpler supramolecular structures. In both compounds, the $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ units act as hydrogen-bond donors, as in the acylhydroxylamines, but each of the sulfonyl O atoms acts as a single acceptor. The molecules in DIRMIA are linked thus into molecular ladders with pairs of antiparallel $C_{2}^{2}(7)$ uprights enclosing centrosymmetric $R_{2}^{2}(10)$ rings between the $\mathrm{S}-\mathrm{N}$ bonds acting as rungs; in JEHWUO, the molecules are linked into $(4,4)$ nets (Batten \& Robson, 1998) built from a single type of $R_{4}^{4}(16)$ ring.

Figure 3
Part of the crystal structure of (I) showing $C_{2}^{2}(10)$ and $C_{3}^{3}(12)$ chains parallel to [001] and [100], respectively, combining to form a (010) sheet of $R_{10}^{8}(38)$ rings. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), hash (\#) or dollar sign (\$) are at the symmetry positions $\left(1-x, \frac{1}{2}+y, \frac{1}{2}-z\right),\left(x, \frac{1}{2}-y, \frac{1}{2}+z\right)$ and ($1-x, 1-y, 1-z$), respectively.

Experimental

Crystals of (I) suitable for single-crystal X-ray diffraction were provided by Professor D. A. Brown of University College Dublin. A synthesis is described in Brown \& Roche (1983).

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}$

$$
\begin{aligned}
& D_{x}=1.282 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \text { reflections } \\
& \theta=9.81-11.23^{\circ} \\
& \mu=0.107 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.40 \times 0.40 \times 0.40 \mathrm{~mm}
\end{aligned}
$$

$M_{r}=89.10$
Monoclinic, $P 2_{1} / c$
$a=12.052$ (3) \AA
$b=8.009$ (3) A
$c=14.354$ (3) \AA
$\beta=92.35$ (2) ${ }^{\circ}$
$V=1384.3$ (7) \AA^{3}
$Z=12$

Data collection

Nonius CAD-4 diffractometer

$\theta / 2 \theta$ scans

3374 measured reflections
3016 independent reflections
2426 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=26.97^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.114$
$S=1.020$
3016 reflections
170 parameters
H -atom parameters constrained

$$
\begin{aligned}
& h=0 \rightarrow 15 \\
& k=0 \rightarrow 10 \\
& l=-18 \rightarrow 18 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \mathrm{~min} \\
& \quad \text { intensity decay: negligible }
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0591 P)^{2}\right. \\
& +0.3743 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.19 \mathrm{e}^{\AA^{-3}}{ }^{-3} \\
& \Delta \rho_{\min }=-0.28 \text { e } \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.026 \text { (3) }
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 12-\mathrm{H} 12 \cdots \mathrm{O} 21^{\mathrm{i}}$	0.82	1.84	$2.6589(15)$	175
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 21^{\mathrm{ii}}$	0.86	2.05	$2.8958(15)$	166
$\mathrm{O} 22-\mathrm{H} 22 \cdots \mathrm{O} 11_{\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 31^{\mathrm{iii}}}$	0.82	1.84	$2.6624(16)$	177
$\mathrm{O}_{2} 2-\mathrm{H} 32 \cdots \mathrm{O}_{1} 1^{\mathrm{iii}}$	0.86	2.03	$2.8609(16)$	163
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{O} 11$	0.86	1.88	$2.6775(17)$	165

Symmetry codes: (i) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (ii) $-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$.
Table 2
Selected geometric parameters $\left(\AA,{ }^{\circ}{ }^{\circ}\right)$.

Parameter	$n=1$	$n=2$	$n=3$
On1-Cn1	$1.2414(15)$	$1.2435(15)$	$1.2472(16)$
$\mathrm{C} n 1-\mathrm{N} n$	$1.3103(18)$	$1.3121(17)$	$1.3117(19)$
$\mathrm{N} n-\mathrm{O} n 2$	$1.3887(15)$	$1.3872(14)$	$1.3854(15)$
On1-Cn1-N $n-\mathrm{O} n 2$	$-8.5(2)$	$-6.6(2)$	$-1.6(2)$
$\mathrm{N} n-\mathrm{C} n 1-\mathrm{C} 2-\mathrm{C} n 3$	$134.74(14)$	$-118.96(16)$	$111.78(17)$

Compound (I) crystallized in the monoclinic system; space group $P 2_{1} / c$ was assumed from the systematic absences. All H atoms were clearly revealed in difference maps and were then allowed for as riding atoms, with $\mathrm{C}-\mathrm{H}=0.96\left(\mathrm{CH}_{3}\right)$ or $0.97 \AA\left(\mathrm{CH}_{2}\right), \mathrm{N}-\mathrm{H}=$ $0.86 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$.

Table 3
Angles (${ }^{\circ}$) around the carbonyl-O acceptor sites.

Parameter	$n=1$	$n=2$	$n=3$
$\mathrm{C} n 1-\mathrm{O} n 1 \cdots \mathrm{O} \dagger$	$124.01(9)$	$116.47(9)$	$118.34(10)$
$\mathrm{C} n 1-\mathrm{O} n 1 \cdots \mathrm{~N} \dagger$	140.71 (10)	133.14 (9)	$138.13(10)$
$\mathrm{O} \cdots \mathrm{O} n 1 \cdots \mathrm{~N}$	$95.06(5)$	$110.36(5)$	$99.39(5)$

$\dagger \mathrm{O}$ and N donors are defined in Table 1.

Data collection: CAD-4-PC Software (Nonius, 1992); cell refinement: SET4 and CELDIM (Nonius, 1992); data reduction: HELENA in PLATON (Spek, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97.

We thank Professor D. A. Brown of University College Dublin for the sample of the title compound.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1449). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Batten, S. R. \& Robson, R. (1998). Angew. Chem. Int. Ed. Engl. 37, 1460-1494.
Blake, C. C. F. \& Small, R. W. H. (1972). Acta Cryst. B28, 2201-2206.
Bracher, B. H. \& Small, R. W. H. (1970). Acta Cryst. B26, 1705-1709.
Brink, K. \& Mattes, R. (1986). Acta Cryst. C42, 319-322.
Brown, D. A. \& Roche, A. L. (1983). Inorg. Chem. 22, 2199-2202.
Denne, W. A. \& Small, R. W. H. (1971). Acta Cryst. B27, 1094-1098.
Hamilton, W. C. (1965). Acta Cryst. 18, 866-870.
Leiserowitz, L. \& Schmidt, G. M. J. (1969). J. Chem. Soc. A, pp. 2372-2382.
Nonius (1992). CAD-4-PC Software. Version 1.1. Nonius BV, Delft, The Netherlands.
Scholz, J. N., Engel, P. S., Glidewell, C. \& Whitmire, K. H. (1989). Tetrahedron, 45, 7695-7708.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (2000). PLATON. University of Utrecht, The Netherlands.
Usanmaz, A. \& Adler, G. (1982). Acta Cryst. B38, 660-662.

